Geometry Problems from the IMO Shortlist

Matthew Brennan
brennanm@mit.edu

1 Introduction

These notes outline a few basic synthetic methods to approach geometry problems on Olympiads. The solution outlines are sketches intended to emphasize motivation more than rigour. In particular, they do not deal with configuration issues and special cases. The accompanying handout includes a few geometry facts and theorems that are useful to know and also worthwhile exercises to work through an prove yourself. Some of the more useful of these facts are highlighted in Section 6.

2 Ideas to Try

Ideas to try on geometry problems:

1. Angle Chasing: Choose a set of angles that defines the diagram and find all possible angles in terms of them e.g. using cyclic quadrilaterals, similar triangles, common angle formulas.
2. Length Chasing: Find relationships between the lengths of sides e.g. using power of a point, similar triangles, Menelaus and Ceva, incircle and excircle side lengths, Pythagorean Theorem.
3. Reduce the Problem: Make some observations that reduce the problem to an easier problem or conjecture something plausible that implies the problem statement.
4. Phantom Points: To prove that a point P has a property, define a new point P^{\prime} in a way that is easier to work with, then prove the property for P^{\prime} and prove that $P=P^{\prime}$.
5. Combine Patterns: Bring parts of the diagram that are related to each other together e.g. through parallel lines, intersecting circumcircles, reflections, constructing similar triangles.
6. Spiral Similarity: Look for or construct similar triangles of the form $A O B$ and $C O D$ and use the angle and length relationships from the fact that $A O C$ and $B O D$ are also similar.
7. Transformations: Look for any transformations already present in the diagram and apply them to other parts of the diagram e.g. homothety, translation, reflection, spiral similarity.
8. Constructing Points: An introduced point P generally is useful if it has two "good" properties i.e. unites two conditions in the problem. Since a point P can always be selected to have a single property, introducing a point is only useful when it unites two conditions. However, most points introduced to solve problems are likely motivated by an approach listed above.
9. Forming Conjectures: Many difficult problems will require a lemma which may not be obvious from the problem statement or initial deductions. Two ways of forming conjectures are:
(a) looking for patterns in precisely drawn diagrams and
(b) thinking about what would be convenient and easy to work with if it were true

It is important to keep both of these ideas in mind when looking for a key observation. Observations made only from the diagram may not be feasible to prove, useless to the problem or false. Conjectures that would be convenient may be obviously disproved by a diagram. It is important to conjecture something which seems clearly true based on one good (or several) diagrams and is both feasible to prove and useful in the problem.
10. What is Difficult?: A diagram will likely have parts that are difficult and parts that are easier to work with. It is often useful to identify what parts are difficult to work with and try to figure out possible ways to handle them e.g. redefining points using phantom points.
11. Trigonometry: Powerful in situations when an angle cannot be expressed simply in terms of other angles e.g. angles involving medians; often works best when you have in mind exactly what you want to prove e.g. a ratio condition.
12. Algebraic Methods: Complex numbers, vectors, coordinates and barycentric coordinates.

3 Exhaust the Diagram

Sometimes it is tempting with geometry problems to immediately start guessing what magic point, line or circle to draw in the diagram leads to an elegant short solution. Before doing this, it is worthwhile to make sure that the problem actually needs something new. Oftentimes, the problem statement already has introduced all parts of the diagram that the most straightforward solution will need. In these cases, making sure you figure out everything you can with what you are given is much more productive than adding points to the diagram. Here are some things to try:

1. Angle Chasing: Given your knowledge of similar triangles and cyclic quadrilaterals in the diagram, find all angle relationships you can in the diagram. This is an essential step in almost all Olympiad geometry problems.
2. Length Chasing: Many problems can be solved by alternating between angle and length chasing - using some length relationships to find a new cyclic quadrilateral or pair of similar triangles and subsequently making use of whatever new angle relationships this yields. Here are some approaches to length chasing:
(a) Similar Triangles: These arise in many different contexts. One common way is spiral similarity: If $O A B$ and $O C D$ are similar triangles with the same orientation, then so are $O A C$ and $O B D$.
(b) Power of a Point: If $A B$ and $C D$ meet at the point P then $P A \cdot P B=P C \cdot P D$ if and only if $A B C D$ is cyclic.
(c) Menelaus and Ceva: Given a triangle $A B C$, let the points D, E and F be on lines $A B, B C$ and $A C$, respectively. Then

$$
\frac{A D}{D B} \cdot \frac{B E}{E C} \cdot \frac{C F}{F A}=1
$$

if and only if D, E and F are collinear or $C D, A E$ and $B F$ are concurrent (depending on how many of D, E and F are on the sides of $A B C$).
3. Work Backwards: Assuming the result is true, what else would have to be true? Can you show any of these implications without assuming the result? Can you use any of these intermediary results to solve the problem?

Here are some examples of problems that can be solved by exhausting the diagram as given in the problem statement, without adding any drastically new points. The first two examples need no new points at all.

Example 1. (ISL 2008 G4) In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the points A and F and tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

Solution. This problem is straightforward with power of a point and does not require introducing any new points other than the orthocenter H of $A B C$ and foot of the perpendicular from A to $B C$, which are already implicitly present. Relating our goal to angles already in the diagram reduces the problem to showing that $\angle Q F B=\angle P E C$. By power of a point $B Q^{2}=B P^{2}=B F \cdot B A$ and triangles $Q F B$ and $A Q B$ are similar. Therefore it suffices to show that $\angle P E C=\angle A Q C$ which is equivalent to $A Q P E$ being cyclic. By power of a point we now have

$$
C P \cdot C Q=B C^{2}-B P^{2}=B C^{2}-B F \cdot B A=B C^{2}-B D \cdot B C=C D \cdot C B=C E \cdot C A
$$

Therefore $A Q P E$ is cyclic and we are done.

4 Completing the Diagram

As seen in the last few examples in the previous section, it is often useful to introduce some points implicit in the problem statement, such as intersection points, triangle centers and projections. A large number of Olympiad geometry problems can be solved by (1) exhausting the diagram and (2) in this way "completing the diagram". This is a vague heuristic and can take many forms, which are impossible to characterize in a single broad stroke. Nonetheless, here is an attempt at some intuition as to when completing the diagram can be useful.

1. The Triangle Picture: Add in orthocenters, circumcenters, excenters, incenters, the circumcircle, midpoints of arcs, feet of altitudes, etc. depending on whether they clarify any parts of the problem statement. This is almost always a good idea to at least try.
2. Intersecting Lines: This can be useful, especially when the intersection is at an angle that can be calculated or has some other significance. A somewhat trivial-sounding rule of thumb is that you want to introduce intersections that add clarity rather than further complicate the diagram. Usually one or several pairs of lines will stand out as useful to intersect.
3. Intersecting Lines with Circles: This is often useful since circles generally give angle relationships for free.
4. Implicit Circles: Sometimes an angle relationship or length relationship will be best simplified when interpreted in terms of a hidden circle.
5. Parallel and Perpendicular Lines: Sometimes it is useful to project points onto lines, either with a perpendicular or skew projection with parallel lines. This is often to create similar triangles or measure lengths.

Another somewhat trivial-sounding rule of thumb is that a introducing a line, point or circle to a diagram is only useful if it was implicit in the problem statement or relates two objects that were previously not relatable. This is the entire heuristic motivation behind the "completing the transformation" tricks for finding new points that are in the next section. In the sections afterwards, we discuss more heuristics in finding the right points to add to a diagram, including phantom points and intersecting circles. This section is devoted to more generic ways to add points to a diagram, which we demonstrate through several miscellaneous examples.
Example 2. (ISL 2006 G4) Let $A B C$ be a triangle such that $\widehat{A C B}<\widehat{B A C}<\frac{\pi}{2}$. Let D be a point of $[A C]$ such that $B D=B A$. The incircle of $A B C$ touches $[A B]$ at K and $[A C]$ at L. Let J be the center of the incircle of $B C D$. Prove that $(K L)$ intersects $[A J]$ at its middle.

Solution. Angle chasing gives that $\angle A L K=90^{\circ}-\angle A / 2$ and $\angle C D J=90^{\circ}-\angle A / 2$. It makes sense to try to relate these two equal angles in the diagram by trying to move one into a position so that it relates to the other. Furthermore, working on the segment $A J$ seems difficult as we do not know angles or lengths related to this line. Instead, we try to work on $A C$, where we can make use of incircle tangent length formulas. We do this by reducing the problem using nonperpendicular projections in the direction of $K L$ onto $A C$. We find that this reduces the problem to a seemingly feasible alternative and also relates the equal angles originally found. Specifically, let P be the intersection of the line perpendicular to $K L$ through J with $A C$. It now suffices to show that L is the midpoint of $A P$. Since $\angle P D J=\angle A L K=\angle D P J$, we have that $P D J$ is isosceles and if M is the midpoint of $D P$, then M is also the foot of the perpendicular from J onto $A C$. Applying incircle tangent length formulas gives that $A L=\frac{1}{2}(A B+A C-B C)$ and $A P=A D+2 A M=A D+(B D+D C-B C)=A B+A C-B C$. This implies that L is the midpoint of $A P$ and the desired result follows.

The next example has multiple elements that are difficult to work with. Here, we follow cues presented in the diagram and obtain useful constructions (introduced points uniting more than one condition) and reduce the problem to feasible ratio calculations.

Example 3. (ISL 1996 G3) Let O be the circumcenter and H the orthocenter of an acute-angled triangle $A B C$ such that $B C>C A$. Let F be the foot of the altitude $C H$ of triangle $A B C$. The perpendicular to the line $O F$ at the point F intersects the line $A C$ at P. Prove that $\angle F H P=$ $\angle B A C$.

Solution. If the problem statement is true, then $\angle C H P=180^{\circ}-\angle B A C$. Based on this angle relationship, intersecting $H P$ with $A B$ creates a cyclic quadrilateral. We reformulate the problem by defining P as the point on $A C$ satisfying $\angle F H P=\angle B A C$ introduce this intersection point and
call it D. Our goal is now to show $\angle P F O=90^{\circ}$ and the two definitions are therefore equivalent. Since $C H A D$ is cyclic, we have that $\angle C D A=180^{\circ}-\angle C H A=\angle C B A$. Since the line $O F$ is difficult to deal with and angles around it have no simple formula, we try to reduce the problem to a condition relating something more directly related to P than $O F$. We have now that $D C B$ is isosceles and F is the midpoint of $B D$. If M is the midpoint of $A B$, then we now note that there is a homothety sending $M F$ to $A D$ with center B and ratio 2 . Let E be the image of O under this homothety. Note that $A E=2 O M=C H$. It now suffices to show that $\angle E D A=90^{\circ}-\angle P F H$. We now try to reduce this angle condition to length conditions which will be easier to deal with since many angles in the diagram cannot be expressed simply. If G is the intersection of $F P$ with the line through C perpendicular to $C H$. Since $\angle G C F=\angle E A D=90^{\circ}$, it suffices to show that $G C F$ and $E A D$ are similar, which is equivalent to showing that

$$
\frac{C H}{A D}=\frac{E A}{A D}=\frac{G C}{C F}=\frac{C P}{P A} \cdot \frac{A F}{C F}
$$

Now we resort to a ratio identity for cyclic quadrilaterals. The ratio $C P / P A$ is the ratio of the areas of triangles $D C H$ and $D A H$. Therefore since $C H A D$ is cyclic, we have that

$$
\frac{C P}{P A}=\frac{\sin \angle D C H \cdot C D \cdot C H}{\sin \angle D A H \cdot A D \cdot A H}=\frac{C B \cdot C H}{A D \cdot A H}
$$

Therefore the desired result reduces to proving that $A H / A F=B C / C F$ which follows from the fact that $A H F$ and $C B F$ are similar. This completes the proof.

5 Completing Transformations

One of the most useful techniques in synthetic geometry problems is to recognize a transformation present in a diagram, and introduce whatever points are needed to complete the set of images of points under this transformation. Often this heuristic yields the "magic point" that leads to a quick concise solution. For example, a diagram may contain a parallelogram $A B C D$ in which cases there is a translation mapping $A B$ to $D C$. A diagram may contain a trapezoid $A B C D$ with $A B \| C D$ in which case there is a homothety mapping $A B$ to $C D$. The transformations that most commonly appear are spiral similarities, rotations, homotheties and translations. The first few examples illustrate different ways to apply this heuristic for spiral similarities and rotations.

The second example is one direction of Ptolemy's Theorem.
Here we construct similar triangles by applying a spiral similarity with center A mapping the C to D. We let the point B be mapped to P under this map, completing the transformation.

In this example we consider the spiral similarity with center B mapping line $C X$ to the perpendicular bisector of $A B$ in order to obtain the angle we want Y to have at the image Y^{\prime} of C. We then show that $Y=Y^{\prime}$.

The next problem illustrates an often useful transformation when there is a midpoint of the side of a triangle. It is often useful to perform a 180° rotation about the midpoint to produce a parallelogram as in the example below which is from Challenging Problems in Geometry.

The next example completes another translation in the same vain as above.
This last example completes a homothety.
Example 4. (ISL 2006 G2) Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $\frac{A K}{K B}=\frac{D L}{L C}$. Suppose that there are
points P and Q on the line segment $K L$ satisfying $\angle A P B=\angle B C D$ and $\angle C Q D=\angle A B C$. Prove that the points P, Q, B and C are concyclic.

Solution. Since $A B C D$ is a trapezoid, there is a homothety sending $A B$ to $C D$ as well as one sending $A B$ to $D C$. We note that the homothety sending $A B$ to $D C$ also sends K to L. Now we complete this homothety in the diagram. Let $D A$ and $C B$ intersect at T and let the homothety with center T bring P to P^{\prime}. We have that K, P, Q, L and P^{\prime} are collinear and $P B \| P^{\prime} C$. Since $\angle D Q C+\angle A P B=\angle D Q C+\angle D P^{\prime} C=180^{\circ}$, we have $D Q C P^{\prime}$ is cyclic. Therefore $\angle Q P B=$ $\angle Q P^{\prime} C=\angle Q D C=180^{\circ}-\angle D Q C-\angle Q C D=\angle Q C B$. The conclusion follows.

6 Redefining Points

In this section, we build on an idea hinted at in Example 13. Sometimes a point may be defined in a deliberately difficult way in a problem statement. This also was the case in Example 3. Often the key to the solution is to find the "useful way" to define the point and prove that this is in fact the same point. Specifically, if P is a point in the diagram that is difficult to deal with, it is often best to define P^{\prime} in some other way using a property we think is true of P and then prove that $P^{\prime}=P$. One thing to note is that this method requires that we have a property of P in mind. Finding out what is true of P is usually the most difficult part of problems that can be solved using this method. Sometimes working backwards is enough, but oftentimes some guesswork, intuition and wishful thinking is necessary.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on a circle in the diagram or is concyclic with other points in the diagram, that two lines are parallel or perpendicular, or that two triangles are similar or congruent. It can be useful sometimes to try to eyeball some of these from a well-drawn diagram. Here are is an example.

Example 5. (ISL 2006 G4) An acute-angled triangle $A B C$ is inscribed in a circle ω. A point P is chosen inside the triangle. Line AP intersects ω at the point A_{1}. Line BP intersects ω at the point B_{1}. A line ℓ is drawn through P and intersects $B C$ and $A C$ at the points A_{2} and B_{2}. Prove that the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$ intersect again on line ℓ.

We want to analyze the second intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. How much we can prove about this intersection Q varies greatly with how we define Q. First let's try defining Q directly as the intersection of the circumcircles of triangles $A_{1} A_{2} C$ and $B_{1} B_{2} C$. From this, we know that $\angle C Q B_{2}=180^{\circ}-\angle C B_{1} B_{2}$ and $\angle C Q A_{2}=180^{\circ}-\angle C A_{1} A_{2}$. What we want is to show that $\angle C Q B_{2}+\angle C Q A_{2}=180^{\circ}$ which now is equivalent to $\angle C B_{1} B_{2}+\angle C A_{1} A_{2}=180^{\circ}$. However, this is not immediately true given the conditions in the problem. This doesn't seem to work. Let's try a different way of defining Q.

Solution. Define Q^{\prime} as the intersection of the circumcircle of $B_{1} P A_{1}$ and ℓ. From cyclic quadrilaterals, we have

$$
\angle B_{1} Q^{\prime} P=\angle B_{1} A_{1} P=\angle B_{1} C B_{2}
$$

which implies that Q^{\prime} is on the circumcircle of $B_{1} B_{2} C$. By a similar argument, we have that Q^{\prime} is on the circumcircle of $A_{1} A_{2} C$. Together these imply that $Q=Q^{\prime}$. Thus Q lies on ℓ.

A solution can also be obtained by defining Q^{\prime} as the intersection of the circumcircle of $B_{1} B_{2} C$ and ℓ. The way we define Q^{\prime} above can be motivated as follows. We want to define Q^{\prime} in some
way and then use this way to show it lies on circles. The cleanest way to do this is to show the angle conditions for a cyclic quadrilateral. In order to get these angle conditions, one promising approach is to define Q^{\prime} as the intersection of a circle with something, which in this case is ℓ.

These next examples illustrate this same method applied in more situations. Particularly in Example 19, it is hard to find a clean solution without the observations used to define P^{\prime}.

Example 6. (China 2012) In the triangle $A B C, \angle A$ is biggest. On the circumcircle of $A B C$, let D be the midpoint of arc $A B C$ and E be the midpoint of arc $A C B$. The circle c_{1} passes through A, B and is tangent to $A C$ at A, the circle c_{2} passes through A, E and is tangent $A D$ at A. Circles c_{1} and c_{2} intersect at A and P. Prove that $A P$ bisects $\angle B A C$.

If the result is true, then by the tangency conditions $\angle A P B=180^{\circ}-\angle B A C$ and $\angle P B A=$ $180^{\circ}-\angle A P B-\angle P A B=\frac{1}{2} \angle B A C=\angle P A B$. Therefore if the problem is true, then P lies on the perpendicular bisector of $A B$. This gives us the hint to try defining P based on this. The method below defines P^{\prime} as the intersection of c_{1} and the perpendicular bisector of $A B$.

Solution. Let the center of c_{1} be O_{1} and let the center of c_{2} be O_{2}. Since c_{1} is tangent to $A C$, it follows that $\angle B O_{1} A=2 \angle B A C$. Since O_{1} and E both lie on the perpendicular bisector of $A B$, it follows that $O_{1} E$ bisects angle $\angle B O_{1} A$ which implies that $\angle B O_{1} A=\angle B A C$ and hence that $\angle B P^{\prime} E=90^{\circ}+\frac{1}{2} \angle B A C$. However, since P^{\prime} lies on the perpencular bisector $E O_{1}$ of $A B, A$ is the reflection of B about $E O_{1}$ and $\angle A P^{\prime} E=\angle B P^{\prime} E=90^{\circ}+\angle B A C$. Since c_{2} is tangent to $A D$ and passes through E, it follows that $\angle A O_{2} E=2 \angle D A E=180^{\circ}-\angle B A C$. Combining this with the angle relation above yields that P^{\prime} lies on c_{2}. Hence P^{\prime} lies on both c_{1} and c_{2} and $P=P^{\prime}$. Therefore $\angle B A P=\frac{1}{2} \angle B O_{1} P=\frac{1}{2} \angle B A C$ which implies the result.

The next example really illustrates the power of redefining a point that is difficult to work with. Here, a relatively simple restatement reduces the problem to simple angle chasing.

Example 7. (ISL 2002 G3) The circle S has centre O, and $B C$ is a diameter of S. Let A be a point of S such that $\angle A O B<120^{\circ}$. Let D be the midpoint of the arc $A B$ which does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incentre of the triangle CEF.

Solution. We first make several preliminary observations. Since $E F$ is the perpendicular bisector of $O A$, we have that $A E=O E=O A$ and therefore $A O E$ is equilateral. Similarly, we have that $A O F$ is equilateral which implies that $\angle E O F=120^{\circ}$ and $\angle E C F=60^{\circ}$. These results also imply that A is the midpoint of arc $\widehat{E F}$ and $C A$ bisects $\angle E C F$. After these preliminary observations, it becomes difficult to work with the point I as defined. The key here is to redefine I to be easier to work with. We now define I^{\prime} to be the incenter of $C E F$ with the goal of showing that $\angle D A O=\angle A O I^{\prime}$ since this would imply that $O I^{\prime} \| A D$ and therefore $I=I^{\prime}$. At this point, the task becomes far more feasible than before and reduces to angle chasing. First we note that $\angle E O F=120^{\circ}$ and $\angle E I^{\prime} F=90^{\circ}+\angle E C F / 2=120^{\circ}$ which implies that $E I^{\prime} O F$ is cyclic. Now we carry out our angle chasing methodically, attempting to eliminate points from consideration as we go. Note that $\angle D A O=90^{\circ}-\angle A O D / 2=90^{\circ}-\angle A C B / 2=45^{\circ}+\angle A B C / 2=45^{\circ}+\angle A F C / 2$, which is enough to eliminate D and B. Now note that $\angle A O I^{\prime}=\angle A O E+\angle E O I^{\prime}=60^{\circ}+\angle E F I=60^{\circ}+\angle E F C / 2$. Since $\angle A F C-\angle E F C=30^{\circ}$, we have that $\angle D A O=\angle A O I^{\prime}$, as desired.

A remarkably powerful way of redefining points is to try to identify them as the intersection of a line or circle with another circle. This yields angle information that often leads to quick solutions. To illustrate this, we outline the solution to what is possibly the hardest geometry problem on the IMO in recent memory.

Example 8. (IMO 2011) Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

Exhausting the diagram yields almost nothing promising. The main issue is that we know almost nothing about the point of tangency. The key to the simplest solution to this problem is to find a way to define this supposed point of tangency. We try intersecting circumcircles in order to obtain angle information to prove that the point of intersection lies on Γ, the circumcircle of the triangle determined by the three lines and prove that the circles are tangent at this point.

Solution. Let A^{\prime}, B^{\prime} and C^{\prime} be the intersections of ℓ_{b} and ℓ_{c}, ℓ_{a} and ℓ_{c}, and ℓ_{a} and ℓ_{b}, respectively. Let P be the point of tangency between Γ and ℓ and let Q be the reflection of P through $B C$. Now let T be the second intersection of the circumcircles of $B B^{\prime} Q$ and $C C^{\prime} Q$. It can be shown that T lies on Γ and the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ by angle chasing. Similarly, T can be shown to be a point of tangency between the circles by angle chasing. The angle chasing is made easier by first showing that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ meet at the incenter I of $A^{\prime} B^{\prime} C^{\prime}$.

Example 9. (2005 G5) Let $\triangle A B C$ be an acute-angled triangle with $A B \neq A C$. Let H be the orthocenter of triangle $A B C$, and let M be the midpoint of the side $B C$. Let D be a point on the side $A B$ and E a point on the side $A C$ such that $A E=A D$ and the points D, H, E are on the same line. Prove that the line $H M$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle A B C$ and triangle $\triangle A D E$.

Solution. It is a known fact that the line $H M$ passes through P, the point diametrically opposite to A on the circumcircle Γ of $A B C$. Based on this, it would be convenient if $H M$ passed through the second intersection Q of Γ and the circumcircle of $A D E$. If this were true, then $A Q$ and the line $\overline{P M H Q}$ would be perpendicular since $A P$ is a diameter of the circumcircle of $A B C$. At this point, it is not a bad idea to draw one or two precise diagrams and see if our claim is supported. We find that it is and decide to focus on this claim. Proving the claim directly does not seem easy since it is hard to work with the second intersection point while actually using the fact that it lies on both circles. We look for a conjecture easier to prove that arises from our claim. If the claim is true, then $\overline{P M H Q}$ must also pass through the point R diametrically opposite to A on the circumcircle of $A D E$. Proving this seems more feasible, since it does not involve the second intersection and we work with it first. Treating this new claim as its own subproblem yields the following solution.

Let U and V be the feet of the perpendiculars from B and C to $A C$ and $A B$. Angle chasing yields that the line $\overline{D H E}$ is the internal bisector of the angle formed by lines $B U$ and $C V$. It also holds that triangles $U H C$ and $V H B$ are similar. Therefore $U D / D B=V E / E C=t$. If the perpendicular to $A B$ at D intersects $H P$ at R_{1}, then since $U H P B$ is a trapezoid it follows that $H R_{1} / R_{1} P=t$. Similarly if the perpendicular to $A C$ at E intersects $H P$ at R_{2}, then $H R_{2} / R_{2} P=t$ and $R_{1}=R_{2}=R$. This proves the claim.

Now to complete the solution, take the projection Q^{\prime} of A onto line $\overline{P M H R}$. Since $A R$ and $A P$ are diameters of the circumcircle of $A D E$ and Γ, it follows that Q^{\prime} lies on both circles and thus $Q^{\prime}=Q$. Now it follows that the line $\overline{P M H R}$ is perpendicular to $A Q$, as desired.
(2006 G3) Consider a convex pentagon $A B C D E$ such that

$$
\angle B A C=\angle C A D=\angle D A E \quad, \quad \angle A B C=\angle A C D=\angle A D E
$$

Let P be the point of intersection of the lines $B D$ and $C E$. Prove that the line $A P$ passes through the midpoint of the side $C D$.
(2009 G2) Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$. respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.
(2000 G 3) Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
(2003 G5) Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.
(2005 G4) Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.
(2008 G7) Let $A B C D$ be a convex quadrilateral with $B A$ different from $B C$. Denote the incircles of triangles $A B C$ and $A D C$ by k_{1} and k_{2} respectively. Suppose that there exists a circle k tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to $A D$ and $C D$. Prove that the common external tangents to k_{1} and k_{2} intersect on k.

7 Know the Classical Configurations

There are a lot of classical geometry configurations and miscellaneous facts that can help in math contests. Here is a selection of a few that seem to come up over and over again. Many more are included in my other handout. Some of these are difficult and worthwhile to prove on your own.

1. Given a triangle $A B C$, the intersections of the internal and external bisectors of $\angle B A C$ with the perpendicular bisector of $A B C$ lie on the circumcircle of $A B C$.
2. Facts related to the orthocenter H of a triangle $A B C$ with circumcircle Γ and center O :
(a) If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$.
(b) If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the triangle formed by projecting H onto the sides of $A B C$ to $D E F$ with ratio 2.
(c) If D and E are the intersections of $A H$ with $B C$ and Γ, respectively, then D is the midpoint of $H E$.
(d) If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
(e) If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
3. Facts related to the incenter I and excenters I_{a}, I_{b}, I_{c} of $A B C$ with circumcircle Γ :
(a) If $A I$ intersects Γ at D then $D B=D I=D C, D$ is the midpoint of $I I_{a}$, and $I I_{a}$ is a diameter of the circle with center D which passes through B and C.
(b) If $B I$ and $C I$ intersect Γ again at D and E, then I is the reflection of A in line $D E$ and if M is the intersection of the external bisector of $\angle B A C$ with Γ, then $D M E I$ is a parallelogram.
(c) If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
(d) If M is the midpoint of arc $B A C$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
4. (Symmedian) Given a triangle $A B C$ such that M is the midpoint of $B C$, the symmedian from A is the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.
(a) If the tangents to the circumcircle Γ of $A B C$ at B and C intersect at N, then N lies on the symmedian from A and $\angle B A M=\angle C A N$.
(b) If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
5. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=$ $A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.
6. (Nine-Point Circle) Given a triangle $A B C$, let Γ denote the circle passing through the midpoints of the sides of $A B C$. If H is the orthocenter of $A B C$, then Γ passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
7. (Feuerbach's Theorem) The nine-point circle is tangent to the incircle and excircles.
8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
9. (Euler's Formula) Let O, I and I_{a} be the circumcenter, incenter and A-excenter of a triangle $A B C$ with circumradius R, inradius r and A-exradius r_{a}. Then:
(a) $O I=\sqrt{R(R-2 r)}$.
(b) $O I_{a}=\sqrt{R\left(R+2 r_{a}\right)}$.
10. Let $A B C$ be a given triangle with incircle ω and A-excircle ω_{a}. If ω and ω_{a} are tangent to $B C$ at M and N, then $A N$ passes through the point diametrically opposite to M on ω and $A M$ passes through the point diametrically opposite to N on ω_{a}.
11. Let $A B C$ be a triangle with incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. Let M be the midpoint of $B C$. The perpendicular to $B C$ at D, the median $A M$ and the line $E F$ are concurrent.
12. Let $A B C$ be a triangle with incenter I and incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. The angle bisector $C I$ intersects $F E$ at a point T on the line adjoining the midpoints of $A B$ and $B C$. It also holds that $B F T I D$ is cyclic and $\angle B T C=90^{\circ}$.
13. Let $A B C$ be a triangle with incircle ω and let D and E be the points at which ω is tangent to $B C$ and the A-excircle is tangent to $B C$. Then $A E$ passes through the point diametrically opposite to D on ω.
14. Let $A B C$ be a triangle with A-excenter I_{A} and altitutde $A D$. Let M be the midpoint of $A D$ and let K be the point of tangency between the incircle of $A B C$ and $B C$. Then I_{A}, K and M are collinear.
15. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.
16. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
17. (Butterfly Theorem) Let M be the midpoint of a chord $X Y$ of a circle Γ. The chords $A B$ and $C D$ pass through M. If $A D$ and $B C$ intersect chord $X Y$ at P and Q, then M is also the midpoint of $P Q$.
18. (Mixtilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let ω be a circle tangent internally to Γ and to $A B$ anc $A C$ at X and Y. Then the incenter of $A B C$ is the midpoint of segment $X Y$.
19. (Curvilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let D be a point on segment $B C$. Let ω be a circle tangent to $\Gamma, D A$ and $D C$. If ω is tangent to $D A$ and $D C$ at F and E, then the incenter of $A B C$ lies on $F E$.
20. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.
21. Pascal's, Desargues', Pappus', Feuerbach, other interesting facts to prove, etc? https://artofproblemsolvi

8 Suggested Problems

1.

9 More Problems

1. (1998 G1) A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.
2. (2001 G1) Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.
3. (2003 G2) Given three fixed pairwisely distinct points A, B, C lying on one straight line in this order. Let G be a circle passing through A and C whose center does not lie on the line $A C$. The tangents to G at A and C intersect each other at a point P. The segment $P B$ meets the circle G at Q. Show that the point of intersection of the angle bisector of the angle $A Q C$ with the line $A C$ does not depend on the choice of the circle G.
4. (2008 G1) Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $B C$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}. Prove that the six points A_{1}, A_{2}, B_{1}, B_{2}, C_{1} and C_{2} are concyclic.
5. (2005 G2) Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
6. (2012 G3) In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.
7. (2007 G3) The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.
8. (2009 G4) Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G and H.
9. (2009 G3) Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelogram. Prove that $G R=G S$.
10. (1995 G8) Suppose that $A B C D$ is a cyclic quadrilateral. Let $E=A C \cap B D$ and $F=A B \cap C D$. Denote by H_{1} and H_{2} the orthocenters of triangles $E A D$ and $E B C$, respectively. Prove that the points F, H_{1}, H_{2} are collinear.
11. (2007 G4) Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.
12. (2011 G4) Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G and X are collinear.
13. (2010 G5) Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.
14. (1998 G5) Let $A B C$ be a triangle, H its orthocenter, O its circumcenter, and R its circumradius. Let D be the reflection of the point A across the line $B C$, let E be the reflection of the point B across the line $C A$, and let F be the reflection of the point C across the line $A B$. Prove that the points D, E and F are collinear if and only if $O H=2 R$.
15. (1999 G6) Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and B. MA and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.
16. (2005 G6) Let $A B C$ be a triangle, and M the midpoint of its side $B C$. Let γ be the incircle of triangle $A B C$. The median $A M$ of triangle $A B C$ intersects the incircle γ at two points K and L. Let the lines passing through K and L, parallel to $B C$, intersect the incircle γ again in two points X and Y. Let the lines $A X$ and $A Y$ intersect $B C$ again at the points P and Q. Prove that $B P=C Q$.
17. (2009 G6) Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are circumcenters and points H_{1} and H_{2} are orthocenters of triangles $A B P$ and $C D P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the lines $H_{1} H_{2}$ are concurrent.
18. (2011 G3) Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$ and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$ and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersections of ω_{E} and ω_{F}.
19. (2006 G9) Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively ($A_{2} \neq A, B_{2} \neq B, C_{2} \neq C$). Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A$, $A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.
20. (2012 G6) Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.
21. (2007 G8) Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.
22. (2009 G8) Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2} and I_{3} the incenters of $\triangle A B M, \triangle M N C$ and $\triangle N D A$, respectively. Prove that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.
23. (2004 G8) Given a cyclic quadrilateral $A B C D$, let M be the midpoint of the side $C D$, and let N be a point on the circumcircle of triangle $A B M$. Assume that the point N is different from the point M and satisfies $\frac{A N}{B N}=\frac{A M}{B M}$. Prove that the points E, F, N are collinear, where $E=A C \cap B D$ and $F=B C \cap D A$.
24. (2011 G6) Let $A B C$ be a triangle with $A B=A C$ and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B and C at the point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incentre of triangle $K A B$.
25. (2011 G7) Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with centre O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.
26. (2012 G2) Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.
27. (2012 G4) Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.
28. (2013 G3) Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.
29. (2013 G5) Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
30. (2014 G3) Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle $A B C$ with $A B>B C$. The angle bisector of $\angle A B C$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter $B M$. The angle bisectors of $\angle A O B$ and $\angle B O C$ intersect Γ at points P and Q, respectively. The point R is chosen on the line $P Q$ so that $B R=M R$. Prove that $B R \| A C$.
31. (2015 G3) Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

10 Hints

If there is a theorem or fact that is useful, I have tried to indicate it with the label TL.
1.

