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1 Introduction

These notes outline a few basic synthetic methods to approach geometry problems on Olympiads.
The solution outlines are sketches intended to emphasize motivation more than rigour. In particular,
they do not deal with configuration issues and special cases. The accompanying handout includes
a few geometry facts and theorems that are useful to know and also worthwhile exercises to work
through an prove yourself. Some of the more useful of these facts are highlighted in Section 6.

2 Ideas to Try

Ideas to try on geometry problems:

1. Angle Chasing : Choose a set of angles that defines the diagram and find all possible angles
in terms of them e.g. using cyclic quadrilaterals, similar triangles, common angle formulas.

2. Length Chasing : Find relationships between the lengths of sides e.g. using power of a point,
similar triangles, Menelaus and Ceva, incircle and excircle side lengths, Pythagorean Theorem.

3. Reduce the Problem: Make some observations that reduce the problem to an easier problem
or conjecture something plausible that implies the problem statement.

4. Phantom Points: To prove that a point P has a property, define a new point P ′ in a way
that is easier to work with, then prove the property for P ′ and prove that P = P ′.

5. Combine Patterns: Bring parts of the diagram that are related to each other together e.g.
through parallel lines, intersecting circumcircles, reflections, constructing similar triangles.

6. Spiral Similarity : Look for or construct similar triangles of the form AOB and COD and use
the angle and length relationships from the fact that AOC and BOD are also similar.

7. Transformations: Look for any transformations already present in the diagram and apply
them to other parts of the diagram e.g. homothety, translation, reflection, spiral similarity.

8. Constructing Points: An introduced point P generally is useful if it has two “good” properties
i.e. unites two conditions in the problem. Since a point P can always be selected to have a
single property, introducing a point is only useful when it unites two conditions. However,
most points introduced to solve problems are likely motivated by an approach listed above.
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9. Forming Conjectures: Many difficult problems will require a lemma which may not be obvious
from the problem statement or initial deductions. Two ways of forming conjectures are:

(a) looking for patterns in precisely drawn diagrams and

(b) thinking about what would be convenient and easy to work with if it were true

It is important to keep both of these ideas in mind when looking for a key observation.
Observations made only from the diagram may not be feasible to prove, useless to the problem
or false. Conjectures that would be convenient may be obviously disproved by a diagram. It
is important to conjecture something which seems clearly true based on one good (or several)
diagrams and is both feasible to prove and useful in the problem.

10. What is Difficult? : A diagram will likely have parts that are difficult and parts that are easier
to work with. It is often useful to identify what parts are difficult to work with and try to
figure out possible ways to handle them e.g. redefining points using phantom points.

11. Trigonometry : Powerful in situations when an angle cannot be expressed simply in terms of
other angles e.g. angles involving medians; often works best when you have in mind exactly
what you want to prove e.g. a ratio condition.

12. Algebraic Methods: Complex numbers, vectors, coordinates and barycentric coordinates.

3 Exhaust the Diagram

Sometimes it is tempting with geometry problems to immediately start guessing what magic point,
line or circle to draw in the diagram leads to an elegant short solution. Before doing this, it is
worthwhile to make sure that the problem actually needs something new. Oftentimes, the problem
statement already has introduced all parts of the diagram that the most straightforward solution
will need. In these cases, making sure you figure out everything you can with what you are given
is much more productive than adding points to the diagram. Here are some things to try:

1. Angle Chasing : Given your knowledge of similar triangles and cyclic quadrilaterals in the
diagram, find all angle relationships you can in the diagram. This is an essential step in
almost all Olympiad geometry problems.

2. Length Chasing : Many problems can be solved by alternating between angle and length
chasing – using some length relationships to find a new cyclic quadrilateral or pair of similar
triangles and subsequently making use of whatever new angle relationships this yields. Here
are some approaches to length chasing:

(a) Similar Triangles: These arise in many different contexts. One common way is spiral
similarity: If OAB and OCD are similar triangles with the same orientation, then so
are OAC and OBD.

(b) Power of a Point : If AB and CD meet at the point P then PA · PB = PC · PD if and
only if ABCD is cyclic.
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(c) Menelaus and Ceva: Given a triangle ABC, let the points D,E and F be on lines
AB,BC and AC, respectively. Then

AD

DB
· BE
EC
· CF
FA

= 1

if and only if D,E and F are collinear or CD,AE and BF are concurrent (depending
on how many of D, E and F are on the sides of ABC).

3. Work Backwards: Assuming the result is true, what else would have to be true? Can you show
any of these implications without assuming the result? Can you use any of these intermediary
results to solve the problem?

Here are some examples of problems that can be solved by exhausting the diagram as given in the
problem statement, without adding any drastically new points. The first two examples need no
new points at all.

Example 1. (ISL 2008 G4) In an acute triangle ABC segments BE and CF are altitudes. Two
circles passing through the points A and F and tangent to the line BC at the points P and Q so
that B lies between C and Q. Prove that lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution. This problem is straightforward with power of a point and does not require introducing
any new points other than the orthocenter H of ABC and foot of the perpendicular from A to BC,
which are already implicitly present. Relating our goal to angles already in the diagram reduces
the problem to showing that ∠QFB = ∠PEC. By power of a point BQ2 = BP 2 = BF · BA and
triangles QFB and AQB are similar. Therefore it suffices to show that ∠PEC = ∠AQC which is
equivalent to AQPE being cyclic. By power of a point we now have

CP · CQ = BC2 −BP 2 = BC2 −BF ·BA = BC2 −BD ·BC = CD · CB = CE · CA

Therefore AQPE is cyclic and we are done.

4 Completing the Diagram

As seen in the last few examples in the previous section, it is often useful to introduce some points
implicit in the problem statement, such as intersection points, triangle centers and projections. A
large number of Olympiad geometry problems can be solved by (1) exhausting the diagram and (2)
in this way “completing the diagram”. This is a vague heuristic and can take many forms, which
are impossible to characterize in a single broad stroke. Nonetheless, here is an attempt at some
intuition as to when completing the diagram can be useful.

1. The Triangle Picture: Add in orthocenters, circumcenters, excenters, incenters, the circum-
circle, midpoints of arcs, feet of altitudes, etc. depending on whether they clarify any parts
of the problem statement. This is almost always a good idea to at least try.

2. Intersecting Lines: This can be useful, especially when the intersection is at an angle that
can be calculated or has some other significance. A somewhat trivial-sounding rule of thumb
is that you want to introduce intersections that add clarity rather than further complicate
the diagram. Usually one or several pairs of lines will stand out as useful to intersect.
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3. Intersecting Lines with Circles: This is often useful since circles generally give angle relation-
ships for free.

4. Implicit Circles: Sometimes an angle relationship or length relationship will be best simplified
when interpreted in terms of a hidden circle.

5. Parallel and Perpendicular Lines: Sometimes it is useful to project points onto lines, either
with a perpendicular or skew projection with parallel lines. This is often to create similar
triangles or measure lengths.

Another somewhat trivial-sounding rule of thumb is that a introducing a line, point or circle to
a diagram is only useful if it was implicit in the problem statement or relates two objects that
were previously not relatable. This is the entire heuristic motivation behind the “completing
the transformation” tricks for finding new points that are in the next section. In the sections
afterwards, we discuss more heuristics in finding the right points to add to a diagram, including
phantom points and intersecting circles. This section is devoted to more generic ways to add points
to a diagram, which we demonstrate through several miscellaneous examples.

Example 2. (ISL 2006 G4) Let ABC be a triangle such that ÂCB < B̂AC < π
2 . Let D be a point

of [AC] such that BD = BA. The incircle of ABC touches [AB] at K and [AC] at L. Let J be
the center of the incircle of BCD. Prove that (KL) intersects [AJ ] at its middle.

Solution. Angle chasing gives that ∠ALK = 90◦ − ∠A/2 and ∠CDJ = 90◦ − ∠A/2. It makes
sense to try to relate these two equal angles in the diagram by trying to move one into a position
so that it relates to the other. Furthermore, working on the segment AJ seems difficult as we
do not know angles or lengths related to this line. Instead, we try to work on AC, where we
can make use of incircle tangent length formulas. We do this by reducing the problem using non-
perpendicular projections in the direction of KL onto AC. We find that this reduces the problem
to a seemingly feasible alternative and also relates the equal angles originally found. Specifically,
let P be the intersection of the line perpendicular to KL through J with AC. It now suffices
to show that L is the midpoint of AP . Since ∠PDJ = ∠ALK = ∠DPJ , we have that PDJ
is isosceles and if M is the midpoint of DP , then M is also the foot of the perpendicular from
J onto AC. Applying incircle tangent length formulas gives that AL = 1

2(AB + AC − BC) and
AP = AD + 2AM = AD + (BD + DC − BC) = AB + AC − BC. This implies that L is the
midpoint of AP and the desired result follows.

The next example has multiple elements that are difficult to work with. Here, we follow cues
presented in the diagram and obtain useful constructions (introduced points uniting more than one
condition) and reduce the problem to feasible ratio calculations.

Example 3. (ISL 1996 G3) Let O be the circumcenter and H the orthocenter of an acute-angled
triangle ABC such that BC > CA. Let F be the foot of the altitude CH of triangle ABC. The
perpendicular to the line OF at the point F intersects the line AC at P . Prove that ∠FHP =
∠BAC.

Solution. If the problem statement is true, then ∠CHP = 180◦ − ∠BAC. Based on this angle
relationship, intersecting HP with AB creates a cyclic quadrilateral. We reformulate the problem
by defining P as the point on AC satisfying ∠FHP = ∠BAC introduce this intersection point and
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call it D. Our goal is now to show ∠PFO = 90◦ and the two definitions are therefore equivalent.
Since CHAD is cyclic, we have that ∠CDA = 180◦ − ∠CHA = ∠CBA. Since the line OF is
difficult to deal with and angles around it have no simple formula, we try to reduce the problem
to a condition relating something more directly related to P than OF . We have now that DCB is
isosceles and F is the midpoint of BD. If M is the midpoint of AB, then we now note that there
is a homothety sending MF to AD with center B and ratio 2. Let E be the image of O under this
homothety. Note that AE = 2OM = CH. It now suffices to show that ∠EDA = 90◦ − ∠PFH.
We now try to reduce this angle condition to length conditions which will be easier to deal with
since many angles in the diagram cannot be expressed simply. If G is the intersection of FP with
the line through C perpendicular to CH. Since ∠GCF = ∠EAD = 90◦, it suffices to show that
GCF and EAD are similar, which is equivalent to showing that

CH

AD
=
EA

AD
=
GC

CF
=
CP

PA
· AF
CF

Now we resort to a ratio identity for cyclic quadrilaterals. The ratio CP/PA is the ratio of the
areas of triangles DCH and DAH. Therefore since CHAD is cyclic, we have that

CP

PA
=

sin∠DCH · CD · CH
sin∠DAH ·AD ·AH

=
CB · CH
AD ·AH

Therefore the desired result reduces to proving that AH/AF = BC/CF which follows from the
fact that AHF and CBF are similar. This completes the proof.

5 Completing Transformations

One of the most useful techniques in synthetic geometry problems is to recognize a transformation
present in a diagram, and introduce whatever points are needed to complete the set of images
of points under this transformation. Often this heuristic yields the “magic point” that leads to
a quick concise solution. For example, a diagram may contain a parallelogram ABCD in which
cases there is a translation mapping AB to DC. A diagram may contain a trapezoid ABCD with
AB‖CD in which case there is a homothety mapping AB to CD. The transformations that most
commonly appear are spiral similarities, rotations, homotheties and translations. The first few
examples illustrate different ways to apply this heuristic for spiral similarities and rotations.

The second example is one direction of Ptolemy’s Theorem.
Here we construct similar triangles by applying a spiral similarity with center A mapping the

C to D. We let the point B be mapped to P under this map, completing the transformation.
In this example we consider the spiral similarity with center B mapping line CX to the per-

pendicular bisector of AB in order to obtain the angle we want Y to have at the image Y ′ of C.
We then show that Y = Y ′.

The next problem illustrates an often useful transformation when there is a midpoint of the
side of a triangle. It is often useful to perform a 180◦ rotation about the midpoint to produce a
parallelogram as in the example below which is from Challenging Problems in Geometry.

The next example completes another translation in the same vain as above.
This last example completes a homothety.

Example 4. (ISL 2006 G2) Let ABCD be a trapezoid with parallel sides AB > CD. Points K
and L lie on the line segments AB and CD, respectively, so that AK

KB = DL
LC . Suppose that there are
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points P and Q on the line segment KL satisfying ∠APB = ∠BCD and ∠CQD = ∠ABC. Prove
that the points P , Q, B and C are concyclic.

Solution. Since ABCD is a trapezoid, there is a homothety sending AB to CD as well as one
sending AB to DC. We note that the homothety sending AB to DC also sends K to L. Now we
complete this homothety in the diagram. Let DA and CB intersect at T and let the homothety
with center T bring P to P ′. We have that K,P,Q,L and P ′ are collinear and PB‖P ′C. Since
∠DQC + ∠APB = ∠DQC + ∠DP ′C = 180◦, we have DQCP ′ is cyclic. Therefore ∠QPB =
∠QP ′C = ∠QDC = 180◦ − ∠DQC − ∠QCD = ∠QCB. The conclusion follows.

6 Redefining Points

In this section, we build on an idea hinted at in Example 13. Sometimes a point may be defined
in a deliberately difficult way in a problem statement. This also was the case in Example 3. Often
the key to the solution is to find the “useful way” to define the point and prove that this is in fact
the same point. Specifically, if P is a point in the diagram that is difficult to deal with, it is often
best to define P ′ in some other way using a property we think is true of P and then prove that
P ′ = P . One thing to note is that this method requires that we have a property of P in mind.
Finding out what is true of P is usually the most difficult part of problems that can be solved using
this method. Sometimes working backwards is enough, but oftentimes some guesswork, intuition
and wishful thinking is necessary.

Often the best conjectures are simple, such as P lies on a line in the diagram, P lies on a
circle in the diagram or is concyclic with other points in the diagram, that two lines are parallel or
perpendicular, or that two triangles are similar or congruent. It can be useful sometimes to try to
eyeball some of these from a well-drawn diagram. Here are is an example.

Example 5. (ISL 2006 G4) An acute-angled triangle ABC is inscribed in a circle ω. A point P
is chosen inside the triangle. Line AP intersects ω at the point A1. Line BP intersects ω at the
point B1. A line ` is drawn through P and intersects BC and AC at the points A2 and B2. Prove
that the circumcircles of triangles A1A2C and B1B2C intersect again on line `.

We want to analyze the second intersection of the circumcircles of triangles A1A2C and B1B2C.
How much we can prove about this intersection Q varies greatly with how we define Q. First let’s
try defining Q directly as the intersection of the circumcircles of triangles A1A2C and B1B2C. From
this, we know that ∠CQB2 = 180◦ − ∠CB1B2 and ∠CQA2 = 180◦ − ∠CA1A2. What we want is
to show that ∠CQB2 + ∠CQA2 = 180◦ which now is equivalent to ∠CB1B2 + ∠CA1A2 = 180◦.
However, this is not immediately true given the conditions in the problem. This doesn’t seem to
work. Let’s try a different way of defining Q.

Solution. Define Q′ as the intersection of the circumcircle of B1PA1 and `. From cyclic quadrilat-
erals, we have

∠B1Q
′P = ∠B1A1P = ∠B1CB2

which implies that Q′ is on the circumcircle of B1B2C. By a similar argument, we have that Q′ is
on the circumcircle of A1A2C. Together these imply that Q = Q′. Thus Q lies on `.

A solution can also be obtained by defining Q′ as the intersection of the circumcircle of B1B2C
and `. The way we define Q′ above can be motivated as follows. We want to define Q′ in some
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way and then use this way to show it lies on circles. The cleanest way to do this is to show the
angle conditions for a cyclic quadrilateral. In order to get these angle conditions, one promising
approach is to define Q′ as the intersection of a circle with something, which in this case is `.

These next examples illustrate this same method applied in more situations. Particularly in
Example 19, it is hard to find a clean solution without the observations used to define P ′.

Example 6. (China 2012) In the triangle ABC, ∠A is biggest. On the circumcircle of ABC, let
D be the midpoint of arc ABC and E be the midpoint of arc ACB. The circle c1 passes through
A,B and is tangent to AC at A, the circle c2 passes through A,E and is tangent AD at A. Circles
c1 and c2 intersect at A and P . Prove that AP bisects ∠BAC.

If the result is true, then by the tangency conditions ∠APB = 180◦ − ∠BAC and ∠PBA =
180◦ −∠APB −∠PAB = 1

2∠BAC = ∠PAB. Therefore if the problem is true, then P lies on the
perpendicular bisector of AB. This gives us the hint to try defining P based on this. The method
below defines P ′ as the intersection of c1 and the perpendicular bisector of AB.

Solution. Let the center of c1 be O1 and let the center of c2 be O2. Since c1 is tangent to AC, it
follows that ∠BO1A = 2∠BAC. Since O1 and E both lie on the perpendicular bisector of AB,
it follows that O1E bisects angle ∠BO1A which implies that ∠BO1A = ∠BAC and hence that
∠BP ′E = 90◦ + 1

2∠BAC. However, since P ′ lies on the perpencular bisector EO1 of AB, A is
the reflection of B about EO1 and ∠AP ′E = ∠BP ′E = 90◦ + ∠BAC. Since c2 is tangent to AD
and passes through E, it follows that ∠AO2E = 2∠DAE = 180◦ − ∠BAC. Combining this with
the angle relation above yields that P ′ lies on c2. Hence P ′ lies on both c1 and c2 and P = P ′.
Therefore ∠BAP = 1

2∠BO1P = 1
2∠BAC which implies the result.

The next example really illustrates the power of redefining a point that is difficult to work with.
Here, a relatively simple restatement reduces the problem to simple angle chasing.

Example 7. (ISL 2002 G3) The circle S has centre O, and BC is a diameter of S. Let A be a
point of S such that ∠AOB < 120◦. Let D be the midpoint of the arc AB which does not contain
C. The line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA
meets S at E and at F . Prove that I is the incentre of the triangle CEF.

Solution. We first make several preliminary observations. Since EF is the perpendicular bisector of
OA, we have that AE = OE = OA and therefore AOE is equilateral. Similarly, we have that AOF
is equilateral which implies that ∠EOF = 120◦ and ∠ECF = 60◦. These results also imply that A
is the midpoint of arc ÊF and CA bisects ∠ECF . After these preliminary observations, it becomes
difficult to work with the point I as defined. The key here is to redefine I to be easier to work
with. We now define I ′ to be the incenter of CEF with the goal of showing that ∠DAO = ∠AOI ′

since this would imply that OI ′‖AD and therefore I = I ′. At this point, the task becomes far
more feasible than before and reduces to angle chasing. First we note that ∠EOF = 120◦ and
∠EI ′F = 90◦ + ∠ECF/2 = 120◦ which implies that EI ′OF is cyclic. Now we carry out our
angle chasing methodically, attempting to eliminate points from consideration as we go. Note that
∠DAO = 90◦ −∠AOD/2 = 90◦ −∠ACB/2 = 45◦ + ∠ABC/2 = 45◦ + ∠AFC/2, which is enough
to eliminate D and B. Now note that ∠AOI ′ = ∠AOE+∠EOI ′ = 60◦+∠EFI = 60◦+∠EFC/2.
Since ∠AFC − ∠EFC = 30◦, we have that ∠DAO = ∠AOI ′, as desired.
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A remarkably powerful way of redefining points is to try to identify them as the intersection of a
line or circle with another circle. This yields angle information that often leads to quick solutions.
To illustrate this, we outline the solution to what is possibly the hardest geometry problem on the
IMO in recent memory.

Example 8. (IMO 2011) Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent
line to Γ, and let `a, `b and `c be the lines obtained by reflecting ` in the lines BC, CA and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a, `b and `c is
tangent to the circle Γ.

Exhausting the diagram yields almost nothing promising. The main issue is that we know
almost nothing about the point of tangency. The key to the simplest solution to this problem is to
find a way to define this supposed point of tangency. We try intersecting circumcircles in order to
obtain angle information to prove that the point of intersection lies on Γ, the circumcircle of the
triangle determined by the three lines and prove that the circles are tangent at this point.

Solution. Let A′, B′ and C ′ be the intersections of `b and `c, `a and `c, and `a and `b, respectively.
Let P be the point of tangency between Γ and ` and let Q be the reflection of P through BC. Now
let T be the second intersection of the circumcircles of BB′Q and CC ′Q. It can be shown that T
lies on Γ and the circumcircle of A′B′C ′ by angle chasing. Similarly, T can be shown to be a point
of tangency between the circles by angle chasing. The angle chasing is made easier by first showing
that AA′, BB′ and CC ′ meet at the incenter I of A′B′C ′.

Example 9. (2005 G5) Let 4ABC be an acute-angled triangle with AB 6= AC. Let H be the
orthocenter of triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the
side AB and E a point on the side AC such that AE = AD and the points D, H, E are on the
same line. Prove that the line HM is perpendicular to the common chord of the circumscribed
circles of triangle 4ABC and triangle 4ADE.

Solution. It is a known fact that the line HM passes through P , the point diametrically opposite
to A on the circumcircle Γ of ABC. Based on this, it would be convenient if HM passed through
the second intersection Q of Γ and the circumcircle of ADE. If this were true, then AQ and the line
PMHQ would be perpendicular since AP is a diameter of the circumcircle of ABC. At this point,
it is not a bad idea to draw one or two precise diagrams and see if our claim is supported. We find
that it is and decide to focus on this claim. Proving the claim directly does not seem easy since it
is hard to work with the second intersection point while actually using the fact that it lies on both
circles. We look for a conjecture easier to prove that arises from our claim. If the claim is true,
then PMHQ must also pass through the point R diametrically opposite to A on the circumcircle
of ADE. Proving this seems more feasible, since it does not involve the second intersection and we
work with it first. Treating this new claim as its own subproblem yields the following solution.

Let U and V be the feet of the perpendiculars from B and C to AC and AB. Angle chasing
yields that the line DHE is the internal bisector of the angle formed by lines BU and CV . It
also holds that triangles UHC and V HB are similar. Therefore UD/DB = V E/EC = t. If the
perpendicular to AB at D intersects HP at R1, then since UHPB is a trapezoid it follows that
HR1/R1P = t. Similarly if the perpendicular to AC at E intersects HP at R2, then HR2/R2P = t
and R1 = R2 = R. This proves the claim.
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Now to complete the solution, take the projection Q′ of A onto line PMHR. Since AR and
AP are diameters of the circumcircle of ADE and Γ, it follows that Q′ lies on both circles and thus
Q′ = Q. Now it follows that the line PMHR is perpendicular to AQ, as desired.

(2006 G3) Consider a convex pentagon ABCDE such that

∠BAC = ∠CAD = ∠DAE , ∠ABC = ∠ACD = ∠ADE

Let P be the point of intersection of the lines BD and CE. Prove that the line AP passes through
the midpoint of the side CD.

(2009 G2) Let ABC be a triangle with circumcentre O. The points P and Q are interior points
of the sides CA and AB respectively. Let K,L and M be the midpoints of the segments BP,CQ
and PQ. respectively, and let Γ be the circle passing through K,L and M . Suppose that the line
PQ is tangent to the circle Γ. Prove that OP = OQ.

(2000 G3) Let O be the circumcenter and H the orthocenter of an acute triangle ABC. Show
that there exist points D, E, and F on sides BC, CA, and AB respectively such that

OD +DH = OE + EH = OF + FH

and the lines AD, BE, and CF are concurrent.
(2003 G5) Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be a

point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines through P
parallel to CA and CB meet AB at D and E, respectively. The line through P parallel to AB
meets CA and CB at F and G, respectively. Prove that the lines DF and EG intersect on the
circumcircle of the triangle ABC.

(2005 G4) Let ABCD be a fixed convex quadrilateral with BC = DA and BC not parallel
with DA. Let two variable points E and F lie of the sides BC and DA, respectively and satisfy
BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q, the lines EF
and AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary, have a
common point other than P .

(2008 G7) Let ABCD be a convex quadrilateral with BA different from BC. Denote the
incircles of triangles ABC and ADC by k1 and k2 respectively. Suppose that there exists a circle k
tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to AD and CD.
Prove that the common external tangents to k1 and k2 intersect on k.

7 Know the Classical Configurations

There are a lot of classical geometry configurations and miscellaneous facts that can help in math
contests. Here is a selection of a few that seem to come up over and over again. Many more are
included in my other handout. Some of these are difficult and worthwhile to prove on your own.

1. Given a triangle ABC, the intersections of the internal and external bisectors of ∠BAC with
the perpendicular bisector of ABC lie on the circumcircle of ABC.

2. Facts related to the orthocenter H of a triangle ABC with circumcircle Γ and center O:

(a) If D is the point diametrically opposite to A on Γ and M is the midpoint of BC, then
M is also the midpoint of HD.
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(b) If AH,BH and CH intersect Γ again at D,E and F , then there is a homothety centered
at H sending the triangle formed by projecting H onto the sides of ABC to DEF with
ratio 2.

(c) If D and E are the intersections of AH with BC and Γ, respectively, then D is the
midpoint of HE.

(d) If M is the midpoint of BC then AH = 2 ·OM .

(e) If BH and CH intersect AC and AB at D and E, and M is the midpoint of BC, then
M is the center of the circle through B,D,E and C, and MD and ME are tangent to
the circumcircle of ADE.

3. Facts related to the incenter I and excenters Ia, Ib, Ic of ABC with circumcircle Γ:

(a) If AI intersects Γ at D then DB = DI = DC, D is the midpoint of IIa, and IIa is a
diameter of the circle with center D which passes through B and C.

(b) If BI and CI intersect Γ again at D and E, then I is the reflection of A in line DE
and if M is the intersection of the external bisector of ∠BAC with Γ, then DMEI is a
parallelogram.

(c) If the incircle and A-excircle of ABC are tangent to BC at D and E, BD = CE.

(d) If M is the midpoint of arc BAC of Γ, then M is the midpoint of IbIc and the center of
the circle through Ib, Ic, B and C.

4. (Symmedian) Given a triangle ABC such that M is the midpoint of BC, the symmedian
from A is the line that is the reflection of AM in the bisector of angle ∠BAC.

(a) If the tangents to the circumcircle Γ of ABC at B and C intersect at N , then N lies on
the symmedian from A and ∠BAM = ∠CAN .

(b) If the symmedian from A intersects Γ at D, then AB/BD = AC/CD.

5. (Apollonius Circle) Let ABC be a given triangle and let P be a point such that AB/BC =
AP/PC. If the internal and external bisectors of angle ∠ABC meet line AC at Q and R,
then P lies on the circle with diameter QR.

6. (Nine-Point Circle) Given a triangle ABC, let Γ denote the circle passing through the mid-
points of the sides of ABC. If H is the orthocenter of ABC, then Γ passes through the
midpoints of AH,BH and CH and the projections of H onto the sides of ABC.

7. (Feuerbach’s Theorem) The nine-point circle is tangent to the incircle and excircles.

8. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle ABC,
then G lies on segment OH with HG = 2 ·OG.

9. (Euler’s Formula) Let O, I and Ia be the circumcenter, incenter and A-excenter of a triangle
ABC with circumradius R, inradius r and A-exradius ra. Then:

(a) OI =
√
R(R− 2r).

(b) OIa =
√
R(R+ 2ra).
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10. Let ABC be a given triangle with incircle ω and A-excircle ωa. If ω and ωa are tangent to
BC at M and N , then AN passes through the point diametrically opposite to M on ω and
AM passes through the point diametrically opposite to N on ωa.

11. Let ABC be a triangle with incircle ω which is tangent to BC, AC and AB at D, E and F .
Let M be the midpoint of BC. The perpendicular to BC at D, the median AM and the line
EF are concurrent.

12. Let ABC be a triangle with incenter I and incircle ω which is tangent to BC, AC and AB
at D, E and F . The angle bisector CI intersects FE at a point T on the line adjoining the
midpoints of AB and BC. It also holds that BFTID is cyclic and ∠BTC = 90◦.

13. Let ABC be a triangle with incircle ω and let D and E be the points at which ω is tangent
to BC and the A-excircle is tangent to BC. Then AE passes through the point diametrically
opposite to D on ω.

14. Let ABC be a triangle with A-excenter IA and altitutde AD. Let M be the midpoint of AD
and let K be the point of tangency between the incircle of ABC and BC. Then IA,K and
M are collinear.

15. Let ABCD be a convex quadrilateral. The four interior angle bisectors of ABCD are
concurrent and there exists a circle Γ tangent to the four sides of ABCD if and only if
AB + CD = AD +BC.

16. (Simson Line) Let M , N and P be the projections of a point Q onto the sides of a triangle
ABC. Then Q lies on the circumcircle of ABC if and only if M , N and P are collinear. If Q
lies on the circumcircle of ABC, then the reflections of Q in the sides of ABC are collinear
and pass through the orthocenter of the triangle.

17. (Butterfly Theorem) Let M be the midpoint of a chord XY of a circle Γ. The chords AB
and CD pass through M . If AD and BC intersect chord XY at P and Q, then M is also
the midpoint of PQ.

18. (Mixtilinear Incircles) Let ABC be a triangle with circumcircle Γ and let ω be a circle tangent
internally to Γ and to AB anc AC at X and Y . Then the incenter of ABC is the midpoint
of segment XY .

19. (Curvilinear Incircles) Let ABC be a triangle with circumcircle Γ and let D be a point on
segment BC. Let ω be a circle tangent to Γ, DA and DC. If ω is tangent to DA and DC at
F and E, then the incenter of ABC lies on FE.

20. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a
circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.

21. Pascal’s, Desargues’, Pappus’, Feuerbach, other interesting facts to prove, etc? https://artofproblemsolving.com/community/c6h14927

8 Suggested Problems

1.
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9 More Problems

1. (1998 G1) A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular
bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove that the
quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have equal areas.

2. (2001 G1) Let A1 be the center of the square inscribed in acute triangle ABC with two vertices
of the square on side BC. Thus one of the two remaining vertices of the square is on side
AB and the other is on AC. Points B1, C1 are defined in a similar way for inscribed squares
with two vertices on sides AC and AB, respectively. Prove that lines AA1, BB1, CC1 are
concurrent.

3. (2003 G2) Given three fixed pairwisely distinct points A, B, C lying on one straight line in
this order. Let G be a circle passing through A and C whose center does not lie on the line
AC. The tangents to G at A and C intersect each other at a point P . The segment PB
meets the circle G at Q. Show that the point of intersection of the angle bisector of the angle
AQC with the line AC does not depend on the choice of the circle G.

4. (2008 G1) Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered
at the midpoint of BC and passing through H intersects the sideline BC at points A1 and
A2. Similarly, define the points B1, B2, C1 and C2. Prove that the six points A1, A2, B1,
B2, C1 and C2 are concyclic.

5. (2005 G2) Six points are chosen on the sides of an equilateral triangle ABC: A1, A2 on
BC, B1, B2 on CA and C1, C2 on AB, such that they are the vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2 and C1A2 are
concurrent.

6. (2012 G3) In an acute triangle ABC the points D,E and F are the feet of the altitudes
through A,B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2
respectively; the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively.
Prove that I1I2 and O1O2 are parallel.

7. (2007 G3) The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between
the parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P
and Q. Prove that ∠BQP = ∠DAQ.

8. (2009 G4) Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and
the lines AD and BC meet at F . The midpoints of AB and CD are G and H, respectively.
Show that EF is tangent at E to the circle through the points E, G and H.

9. (2009 G3) Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the
points Z and Y , respectively. Let G be the point where the lines BY and CZ meet, and let
R and S be points such that the two quadrilaterals BCY R and BCSZ are parallelogram.
Prove that GR = GS.

10. (1995 G8) Suppose that ABCD is a cyclic quadrilateral. Let E = AC∩BD and F = AB∩CD.
Denote by H1 and H2 the orthocenters of triangles EAD and EBC, respectively. Prove that
the points F , H1, H2 are collinear.
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11. (2007 G4) Consider five points A, B, C, D and E such that ABCD is a parallelogram
and BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that `
intersects the interior of the segment DC at F and intersects line BC at G. Suppose also
that EF = EG = EC. Prove that ` is the bisector of angle DAB.

12. (2011 G4) Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC
and let C0 be the midpoint of AB. Let D be the foot of the altitude from A and let G be
the centroid of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the
circle Ω at a point X 6= A. Prove that the points D,G and X are collinear.

13. (2010 G5) Let ABCDE be a convex pentagon such that BC ‖ AE, AB = BC + AE, and
∠ABC = ∠CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle
BCD. Given that ∠DMO = 90◦, prove that 2∠BDA = ∠CDE.

14. (1998 G5) Let ABC be a triangle, H its orthocenter, O its circumcenter, and R its circum-
radius. Let D be the reflection of the point A across the line BC, let E be the reflection of
the point B across the line CA, and let F be the reflection of the point C across the line AB.
Prove that the points D, E and F are collinear if and only if OH = 2R.

15. (1999 G6) Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B. MA and
MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.

16. (2005 G6) Let ABC be a triangle, and M the midpoint of its side BC. Let γ be the incircle
of triangle ABC. The median AM of triangle ABC intersects the incircle γ at two points K
and L. Let the lines passing through K and L, parallel to BC, intersect the incircle γ again
in two points X and Y . Let the lines AX and AY intersect BC again at the points P and
Q. Prove that BP = CQ.

17. (2009 G6) Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel
to CD) intersect at point P . Points O1 and O2 are circumcenters and points H1 and H2 are
orthocenters of triangles ABP and CDP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD,
the perpendicular from E2 on AB and the lines H1H2 are concurrent.

18. (2011 G3) Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel.
Suppose that the circles with diameters AB and CD meet at points E and F inside the
quadrilateral. Let ωE be the circle through the feet of the perpendiculars from E to the lines
AB,BC and CD. Let ωF be the circle through the feet of the perpendiculars from F to the
lines CD,DA and AB. Prove that the midpoint of the segment EF lies on the line through
the two intersections of ωE and ωF .

19. (2006 G9) Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC
respectively. The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle
of triangle ABC again at points A2, B2, C2 respectively (A2 6= A,B2 6= B,C2 6= C). Points
A3, B3, C3 are symmetric to A1, B1, C1 with respect to the midpoints of the sides BC, CA,
AB respectively. Prove that the triangles A2B2C2 and A3B3C3 are similar.
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20. (2012 G6) Let ABC be a triangle with circumcenter O and incenter I. The points D,E and F
on the sides BC,CA and AB respectively are such that BD+BF = CA and CD+CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

21. (2007 G8) Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of
triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles
APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let
lines AK and BL meet at F . Prove that points E, I, and F are collinear.

22. (2009 G8) Let ABCD be a circumscribed quadrilateral. Let g be a line through A which
meets the segment BC in M and the line CD in N . Denote by I1, I2 and I3 the incenters of
4ABM , 4MNC and 4NDA, respectively. Prove that the orthocenter of 4I1I2I3 lies on g.

23. (2004 G8) Given a cyclic quadrilateral ABCD, let M be the midpoint of the side CD, and
let N be a point on the circumcircle of triangle ABM . Assume that the point N is different
from the point M and satisfies AN

BN = AM
BM . Prove that the points E, F , N are collinear, where

E = AC ∩BD and F = BC ∩DA.

24. (2011 G6) Let ABC be a triangle with AB = AC and let D be the midpoint of AC. The
angle bisector of ∠BAC intersects the circle through D,B and C at the point E inside the
triangle ABC. The line BD intersects the circle through A,E and B in two points B and F .
The lines AF and BE meet at a point I, and the lines CI and BD meet at a point K. Show
that I is the incentre of triangle KAB.

25. (2011 G7) Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω
with centre O. Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be
the foot of the perpendicular from B to CD. Suppose that the perpendicular from B to DF
intersects the line EO at a point K. Let L be the foot of the perpendicular from K to DE.
Prove that DJ = DL.

26. (2012 G2) Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such
that ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove
that D,H,F,G are concyclic.

27. (2012 G4) Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The
lines through D and E perpendicular to BC intersect the lines AO and AD at X and Y
respectively. Prove that the quadrilateral BXCY is cyclic.

28. (2013 G3) Let ABC be a triangle with ∠B > ∠C. Let P and Q be two different points on
line AC such that ∠PBA = ∠QBA = ∠ACB and A is located between P and C. Suppose
that there exists an interior point D of segment BQ for which PD = PB. Let the ray AD
intersect the circle ABC at R 6= A. Prove that QB = QR.

29. (2013 G5) Let ABCDEF be a convex hexagon with AB = DE, BC = EF , CD = FA,
and ∠A − ∠D = ∠C − ∠F = ∠E − ∠B. Prove that the diagonals AD, BE, and CF are
concurrent.
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30. (2014 G3) Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle
ABC with AB > BC. The angle bisector of ∠ABC intersects Ω at M 6= B. Let Γ be the
circle with diameter BM . The angle bisectors of ∠AOB and ∠BOC intersect Γ at points P
and Q, respectively. The point R is chosen on the line PQ so that BR = MR. Prove that
BR ‖ AC.

31. (2015 G3) Let ABC be a triangle with ∠C = 90◦, and let H be the foot of the altitude from
C. A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the
intersection point of the lines BD and CH. Let ω be the semicircle with diameter BD that
meets the segment CB at an interior point. A line through P is tangent to ω at Q. Prove
that the lines CQ and AD meet on ω.

10 Hints

If there is a theorem or fact that is useful, I have tried to indicate it with the label TL.

1.
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